Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(17): 4208-4219, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38650054

RESUMO

While protic ionic liquids (ILs) have found great success as solvents for a broad range of applications, little is known about their degradation when exposed to temperatures above ambient for extended periods of time. Here, we report the thermal stability of six protic ILs, namely, ethylammonium nitrate, ethylammonium formate, ethylammonium acetate, ethanolammonium nitrate, ethanolammonium formate, and ethanolammonium acetate. The effect of heating each ionic liquid to 60 °C for 1 h or 1 week (sealed or open to the atmosphere) was evaluated by considering the changes to water content, pH, mass, thermal phase transitions, and molecular structure after each treatment. Heating each of the six ILs when sealed led to measurable shifts in their water content and 10 wt % pH, but there was no significant change in their mass, thermal phase transitions according to differential scanning calorimetry (DSC), or molecular structure using proton nuclear magnetic resonance (1H NMR) spectra, indicating that the samples were largely unchanged. The samples that were heated open to the atmosphere also displayed no significant changes after 1 h but displayed significant changes after 1 week.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189602

RESUMO

Monoolein-based liquid crystal phases are established media that are researched for various biological applications, including drug delivery. While water is the most common solvent for self-assembly, some ionic liquids (ILs) can support lipidic self-assembly. However, currently, there is limited knowledge of IL-lipid phase behavior in ILs. In this study, the lyotropic liquid crystal phase behavior of monoolein was investigated in six protic ILs known to support amphiphile self-assembly, namely ethylammonium nitrate, ethanolammonium nitrate, ethylammonium formate, ethanolammonium formate, ethylammonium acetate, and ethanolammonium acetate. These ILs were selected to identify specific ion effects on monoolein self-assembly, specifically increasing the alkyl chain length of the cation or anion, the presence of a hydroxyl group in the cation, and varying the anion. The lyotropic liquid crystal phases with 20-80 wt. % of monoolein were characterized over a temperature range from 25 to 65 °C using synchrotron small angle x-ray scattering and cross-polarized optical microscopy. These results were used to construct partial phase diagrams of monoolein in each of the six protic ILs, with inverse hexagonal, bicontinuous cubic, and lamellar phases observed. Protic ILs containing the ethylammonium cation led to monoolein forming lamellar and bicontinuous cubic phases, while those containing the ethanolammonium cation formed inverse hexagonal and bicontinuous cubic phases. Protic ILs containing formate and acetate anions favored bicontinuous cubic phases across a broader range of protic IL concentrations than those containing the nitrate anion.

3.
IUCrJ ; 10(Pt 6): 662-670, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721770

RESUMO

X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.

4.
Struct Dyn ; 10(4): 044302, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577135

RESUMO

The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 µm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 µm. This suggests that precise temperature control and clean deposition conditions allow µm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.

5.
J Chem Phys ; 158(1): 014902, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610972

RESUMO

Lyotropic liquid crystal phases (LCPs) are widely studied for diverse applications, including protein crystallization and drug delivery. The structure and properties of LCPs vary widely depending on the composition, concentration, temperature, pH, and pressure. High-throughput structural characterization approaches, such as small-angle x-ray scattering (SAXS), are important to cover meaningfully large compositional spaces. However, high-throughput LCP phase analysis for SAXS data is currently lacking, particularly for patterns of multiphase mixtures. In this paper, we develop semi-automated software for high throughput LCP phase identification from SAXS data. We validate the accuracy and time-savings of this software on a total of 668 SAXS patterns for the LCPs of the amphiphile hexadecyltrimethylammonium bromide (CTAB) in 53 acidic or basic ionic liquid derived solvents, within a temperature range of 25-75 °C. The solvents were derived from stoichiometric ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN) by adding water to vary the ionicity, and adding precursor ions of ethylamine, ethanolamine, and nitric acid to vary the pH. The thermal stability ranges and lattice parameters for CTAB-based LCPs obtained from the semi-automated analysis showed equivalent accuracy to manual analysis, the results of which were previously published. A time comparison of 40 CTAB systems demonstrated that the automated phase identification procedure was more than 20 times faster than manual analysis. Moreover, the high throughput identification procedure was also applied to 300 unpublished scattering patterns of sodium dodecyl-sulfate in the same EAN and EtAN based solvents in this study, to construct phase diagrams that exhibit phase transitions from micellar, to hexagonal, cubic, and lamellar LCPs. The accuracy and significantly low analysis time of the high throughput identification procedure validates a new, rapid, unrestricted analytical method for the determination of LCPs.


Assuntos
Cristais Líquidos , Água , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X , Cristais Líquidos/química , Cetrimônio , Solventes , Automação
6.
Nat Commun ; 13(1): 4708, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953469

RESUMO

The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX.


Assuntos
Elétrons , Lasers , Cristalografia por Raios X , Radiografia , Raios X
7.
J Mater Chem B ; 10(24): 4546-4560, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35670530

RESUMO

Cryopreservation has facilitated numerous breakthroughs including assisted reproductive technology, stem cell therapies, and species preservation. Successful cryopreservation requires the addition of cryoprotective agents to protect against freezing damage and dehydration. For decades, cryopreservation has largely relied on the same two primary agents: dimethylsulfoxide and glycerol. However, both of these are toxic which limits their use for cells destined for clinical applications. Furthermore, these two agents are ineffective for hundreds of cell types, and organ and tissue preservation has not been achieved. The research presented here shows that deep eutectic solvents can be used as cryoprotectants. Six deep eutectic solvents were explored for their cryoprotective capacity towards mammalian cells. The solvents were tested for their thermal properties, including glass transitions, toxicity, and permeability into mammalian cells. A deep eutectic solvent made from proline and glycerol was an effective cryoprotective agent for all four cell types tested, even with extended incubation prior to freezing. This deep eutectic solvent was more effective and less toxic than its individual components, highlighting the importance of multi-component systems. Cells were characterised post-thawing using atomic force microscopy and confocal microscopy. Molecular dynamics simulations support the biophysical parameters obtained by experimentation. This is one of the first times that this class of solvents has been systematically tested for cryopreservation of mammalian cells and as such this research opens the way for the development of potentially thousands of new cryoprotective agents that can be tailored to specific cell types. The demonstrated capacity of cells to be incubated with the deep eutectic solvent at 37 °C for hours prior to freezing without significant loss of viability is a major step toward the storage of organs and tissues.


Assuntos
Crioprotetores , Solventes Eutéticos Profundos , Animais , Criopreservação , Crioprotetores/farmacologia , Glicerol/farmacologia , Mamíferos , Solventes
8.
J Synchrotron Radiat ; 29(Pt 3): 602-614, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510993

RESUMO

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.


Assuntos
Glicerídeos , Lipídeos , Glicerídeos/química , Proteínas de Membrana/química , Viscosidade , Água/química , Difração de Raios X
9.
IUCrJ ; 9(Pt 2): 231-242, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371507

RESUMO

Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.

10.
J Colloid Interface Sci ; 611: 588-598, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973655

RESUMO

Continuous flow injection is a key technology for serial crystallography measurements of protein crystals suspended in the lipidic cubic phase (LCP). To date, there has been little discussion in the literature regarding the impact of the injection process itself on the structure of the lipidic phase. This is despite the fact that the phase of the injection matrix is critical for the flow properties of the stream and potentially for sample stability. Here we report small-angle X-ray scattering measurements of a monoolein:water mixture during continuous delivery using a high viscosity injector. We observe both an alignment and modification of the LCP as a direct result of the injection process. The orientation of the cubic lattice with respect to the beam was estimated based on the anisotropy of the diffraction pattern and does not correspond to a single low order zone axis. The solvent fraction was also observed to impact the stability of the cubic phase during injection. In addition, depending on the distance traveled by the lipid after exiting the needle, the phase is observed to transition from a pure diamond phase (Pn3m) to a mixture containing both gyriod (Ia3d) and lamellar (Lα) phases. Finite element modelling of the observed phase behaviour during injection indicates that the pressure exerted on the lipid stream during extrusion accounts for the variations in the phase composition of the monoolein:water mixture.


Assuntos
Lipídeos , Água , Transição de Fase , Difração de Raios X
11.
J Synchrotron Radiat ; 28(Pt 5): 1296-1308, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475279

RESUMO

X-rays are routinely used for structural studies through scattering, and femtosecond X-ray lasers can probe ultrafast dynamics. We aim to capture the femtosecond dynamics of liquid samples using simulations and deconstruct the interplay of ionization and atomic motion within the X-ray laser pulse. This deconstruction is resolution dependent, as ionization influences the low momentum transfers through changes in scattering form factors, while atomic motion has a greater effect at high momentum transfers through loss of coherence. Our methodology uses a combination of classical molecular dynamics and plasma simulation on a protic ionic liquid to quantify the contributions to the scattering signal and how these evolve with time during the X-ray laser pulse. Our method is relevant for studies of organic liquids, biomolecules in solution or any low-Z materials at liquid densities that quickly turn into a plasma while probed with X-rays.

12.
J Colloid Interface Sci ; 603: 491-500, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34214724

RESUMO

Cryopreservation has facilitated considerable advances in both medical technology and scientific research. However, further developments have been limited by the relatively low number of effective cryoprotective agents. Even after fifty years of research, most protocols rely on the same two toxic agents, i.e. dimethylsulfoxide or glycerol. Ionic liquids are a class of promising solvents which are known glass formers and may offer a less-toxic alternative. The research presented here investigates ten protic ionic liquids as potential cryoprotective agents. The liquids are screened for key properties including cellular toxicity, permeability and thermal behaviour. The most promising, ethylammonium acetate, was then tested as a cryoprotective agent on a model cell line and was found to be as effective as the common cryoprotectant, dimethylsulfoxide. This work reports the first use of a protic ionic liquid as an effective cryoprotective agent for a mammalian cell line. This will inform the development of a suite of potential new ionic liquid-based cryoprotectants that could potentially allow the cryopreservation of new cell types.


Assuntos
Líquidos Iônicos , Animais , Criopreservação , Crioprotetores/farmacologia , Dimetil Sulfóxido , Solventes
13.
IUCrJ ; 7(Pt 6): 1114-1123, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209322

RESUMO

Resolving the electronic structure of single biological molecules in their native state was among the primary motivations behind X-ray free-electron lasers. The ultra-short pulses they produce can outrun the atomic motion induced by radiation damage, but the electronic structure of the sample is still significantly modified from its original state. This paper explores the decoherence of the scattered signal induced by temporal evolution of the electronic structure in the sample molecule. It is shown that the undamaged electron density of a single-molecule sample can often be retrieved using only the two most occupied modes from the coherent mode decomposition of the partially coherent diffraction fluence.

14.
Acta Crystallogr A Found Adv ; 76(Pt 6): 664-676, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125350

RESUMO

The deterioration of both the signal-to-noise ratio and the spatial resolution in the electron-density distribution reconstructed from diffraction intensities collected at different orientations of a sample is analysed theoretically with respect to the radiation damage to the sample and the variations in the X-ray intensities illuminating different copies of the sample. The simple analytical expressions and numerical estimates obtained for models of radiation damage and incident X-ray pulses may be helpful in planning X-ray free-electron laser (XFEL) imaging experiments and in analysis of experimental data. This approach to the analysis of partially coherent X-ray imaging configurations can potentially be used for analysis of other forms of imaging where the temporal behaviour of the sample and the incident intensity during exposure may affect the inverse problem of sample reconstruction.

15.
J Phys Chem Lett ; 11(15): 6077-6083, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32578996

RESUMO

One of the challenges facing single particle imaging with ultrafast X-ray pulses is the structural heterogeneity of the sample to be imaged. For the method to succeed with weakly scattering samples, the diffracted images from a large number of individual proteins need to be averaged. The more the individual proteins differ in structure, the lower the achievable resolution in the final reconstructed image. We use molecular dynamics to simulate two globular proteins in vacuum, fully desolvated as well as with two different solvation layers, at various temperatures. We calculate the diffraction patterns based on the simulations and evaluate the noise in the averaged patterns arising from the structural differences and the surrounding water. Our simulations show that the presence of a minimal water coverage with an average 3 Å thickness will stabilize the protein, reducing the noise associated with structural heterogeneity, whereas additional water will generate more background noise.


Assuntos
Muramidase/química , Imagem Individual de Molécula/métodos , Ubiquitina/química , Animais , Galinhas , Humanos , Lasers , Conformação Molecular , Simulação de Dinâmica Molecular , Raios X
16.
Small ; 16(24): e2000828, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32383542

RESUMO

How the structure of disordered porous carbons evolves during their activation is particularly poorly understood. This problem endures primarily because of a lack of high-resolution 3D techniques for the characterization of amorphous and highly disordered structure. To address this, the measurement of the 3D pair-angle distribution function using nanodiffraction patterns from high-energy electrons is demonstrated. These rich multiatom correlations are measured for a disordered carbon and they clearly show the structural evolution during activation. They provide previously inaccessible bond-angle information and direct evidence for the presence of ring and adatom defects. An increase in the short-range order and the number of fivefold ring defects with activation are observed, indicating stress relaxation by increasing curvature. These observations support models of disordered porous carbons based on curved graphene networks and explain how large amounts of free volume can be created with surprisingly small changes in the average ratios of tetrahedral to graphitic bonding.

17.
IUCrJ ; 5(Pt 6): 716-726, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443356

RESUMO

It is shown that the average signal-to-noise ratio (SNR) in the three-dimensional electron-density distribution of a sample reconstructed by coherent diffractive imaging cannot exceed twice the square root of the ratio of the mean total number of scattered photons detected during the scan and the number of spatially resolved voxels in the reconstructed volume. This result leads to an upper bound on Shannon's information capacity of this imaging method by specifying the maximum number of distinguishable density distributions within the reconstructed volume when the radiation dose delivered to the sample and the spatial resolution are both fixed. If the spatially averaged SNR in the reconstructed electron density is fixed instead, the radiation dose is shown to be proportional to the third or fourth power of the spatial resolution, depending on the sampling of the three-dimensional diffraction space and the scattering power of the sample.

18.
Phys Chem Chem Phys ; 20(18): 12381-12389, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29488514

RESUMO

Single particle imaging (SPI) using X-ray pulses has become increasingly attainable with the advent of high-intensity free electron lasers. Eliminating the need for crystallized samples enables structural studies of molecules previously inaccessible by conventional crystallography. While this emerging technique already demonstrates substantial promise, some obstacles need to be overcome before SPI can reach its full potential. One such problem is determining the spatial orientation of the sample at the time of X-ray interaction. Existing solutions rely on diffraction data and are computationally demanding and sensitive to noise. In this in silico study, we explore the possibility of aiding these methods by mapping the ion distribution as the sample undergoes a Coulomb explosion following the intense ionization. By detecting the ions ejected from the fragmented sample, the orientation of the original sample should be possible to determine. Knowledge of the orientation has been shown earlier to be of substantial advantage in the reconstruction of the original structure. 150 explosions of each of twelve separate systems - four polypeptides with different amounts of surface bound water - were simulated with molecular dynamics (MD) and the average angular distribution of carbon and sulfur ions was investigated independently. The results show that the explosion maps are reproducible in both cases, supporting the idea that orientation information is preserved. Additional water seems to restrict the carbon ion trajectories further through a shielding mechanism, making the maps more distinct. For sulfurs, water has no significant impact on the trajectories, likely due to their higher mass and greater ionization cross section, indicating that they could be of particular interest. Based on these findings, we conclude that explosion data can aid spatial orientation in SPI experiments and could substantially improve the capabilities of the novel technique.


Assuntos
Peptídeos/química , Peptídeos/efeitos da radiação , Animais , Galinhas , Humanos , Íons/química , Lasers , Simulação de Dinâmica Molecular , Água/química , Raios X
19.
J Appl Crystallogr ; 50(Pt 5): 1533-1540, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021736

RESUMO

The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of ß-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in ß-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of ß-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data. If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.

20.
J Vis Exp ; (126)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28872125

RESUMO

The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.


Assuntos
Fulerenos/metabolismo , Nanopartículas/metabolismo , Difração de Raios X/métodos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA